MEMORY

5V-ONLY
 FLASH MEMORY CARD

MB98A81063-15/81183-15/81273-15/81373-15/81473-15/ 81573-15/81674-20

1M/2M/4M/8M/16M/32M/64M-BYTE 5V-ONLY FLASH ERASABLE AND PROGRAMMABLE MEMORY CARD

- DESCRIPTION

The Fujitsu 5V-Only Flash memory cards are electrically erasable and programmable memory cards capable of storing and retrieving large amounts of data. The memory circuits are housed in a credit-card sized 68 -pin package. Internal circuit is protected by two metal panels, one at the top and the other at the bottom of the card, that help to reduce chip damage from electrostatic discharge.
A unique feature of the Fujitsu memory cards allows the user to organize the card into either an 8-bit or a 16-bit bus configuration. All cards are portable and operate on low power at high speed.
In accordance with the Personal Computer Memory Card Internal Association (PCMCIA) and Japan Electrical Industry Development Association (JEIDA) industry standard specifications, Flash memory cards offer additional EEPROM memory that is used to store attribute data. The attribute memory is a Flash memory card option.
(See page 3 for description of the three available options.)

■ PRODUCT LINE \& FEATURES

- Meet PCMCIA and JEIDA industry standards for 68-pin memory card
- MB98A81063-MB98A81573:

Type I : $85.6 \mathrm{~mm} \times 54.0 \mathrm{~mm} \times 3.3 \mathrm{~mm}$

- MB98A81674:

Type II : $85.6 \mathrm{~mm} \times 54.0 \mathrm{~mm} \times 5.0 \mathrm{~mm}$ (Connector Portion : 3.3 mm)

- $+5 \mathrm{~V} \pm 5 \%$ power supply program and erase
- Command control for Automated Program / Automated Erase operation
- Erase Suspend Read / Program Capability (Only Erase Suspend Read is possible for MB98A81063)
- 128 KB Sector Erase (at $\times 16$ mode)
- Any Combination of Sectors Erase and Full Chip Erase
- Detection of completion of program/erase operation with Data Polling or Toggle bit.
- Ready/Busy Output with R/B (Except for MB98A81063)
- Reset Function with RESET pin (Except for MB98A81063)
- Write protect function with WP switch (Except for MB98A81674)
- Low Vcc Write Inhibit

PACKAGE

DESCRIPTIONS

DESCRIPTION TABLE

Part Number	Common Memory			Attribute Memory		
	Memory Device	$\begin{gathered} \hline \text { Organization } \\ (W \times \text { bit }) \end{gathered}$	Access Time	Memory Device	$\begin{gathered} \text { Organization } \\ (W \times \text { bit }) \end{gathered}$	Access Time
MB98A81063	4M bit Flash Memory $\times 2$	$1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16$	$150 \mathrm{~ns}$ max.	$\begin{gathered} 16 \mathrm{~K} \mathrm{bit} \\ \text { EEPROM } \times 1 \end{gathered}$	$2 \mathrm{~K} \times 8$	$250 \text { ns }$max.
MB98A81183	8M bit Flash Memory $\times 2$	$2 \mathrm{M} \times 8 / 1 \mathrm{M} \times 16$				
MB98A81273	16M bit Flash Memory $\times 2$	$4 \mathrm{M} \times 8 / 2 \mathrm{M} \times 16$				
MB98A81373	16M bit Flash Memory $\times 4$	$8 \mathrm{M} \times 8 / 4 \mathrm{M} \times 16$				
MB98A81473	16M bit Flash Memory $\times 8$	$16 \mathrm{M} \times 8 / 8 \mathrm{M} \times 16$				
MB98A81573	16M bit Flash Memory $\times 16$	$32 \mathrm{M} \times 8 / 16 \mathrm{M} \times 16$				
MB98A81674	16M bit Flash Memory $\times 32$	$64 \mathrm{M} \times 8 / 32 \mathrm{M} \times 16$	200 ns max.			

DIFFERENCES

	MB98A81063	MB98A81183	MB98A81273	MB98A81373	MB98A81473	MB98A81573	MB98A81674
Density	1MB	2MB	4MB	8MB	16MB	32 MB	64 MB
Memory Device	4M bit	8M bit	16M bit	\leftarrow	\leftarrow	\leftarrow	\leftarrow
Quantity	2	2	2	4	8	16	32
Read	1 B unit	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
Program	1 B unit	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
Chip Erase	512 KB unit	1 MB unit	2 MB unit	\leftarrow	\leftarrow	\leftarrow	\leftarrow
Sector Erase	64 KB unit	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
Number of Sectors	16	32	64	128	256	512	1024
Erase Suspend Read	Yes						
Erase Suspend Program	No	Yes	Yes	Yes	Yes	Yes	Yes
Address	Ao to A_{19}	Ao to A_{20}	A0 to A_{21}	A0 to A_{22}	A0 to A_{23}	A0 to A_{24}	Ao to A_{25}
RESET	No	Yes	Yes	Yes	Yes	Yes	Yes
R/B	No	Yes	Yes	Yes	Yes	Yes	Yes

DESCRIPTIONS (Continued)

ADDRESS MAP (for $\times 16$ mode, not contained A_{0})

- PIN ASSIGNMENTS

Pin No.	Symbol						
1	GND	18	N.C.	35	GND	52	N.C.
2	D_{3}	19	A_{16}	36	CD1	53	$\mathrm{A}_{22} /$ N.C. ${ }^{*}$
3	D4	20	A 15	37	D_{11}	54	$\mathrm{A}_{23} /$ N.C. ${ }^{*}$
4	D5	21	A_{12}	38	D_{12}	55	A $24 / N . C . * ~^{*}$
5	D6	22	A_{7}	39	D_{13}	56	A $25 /$ N.C. ${ }^{*}$
6	D_{7}	23	A_{6}	40	D14	57	N.C.
7	CE1	24	A_{5}	41	D15	58	RESET/N.C.
8	A_{10}	25	A_{4}	42	CE2	59	N.C.
9	OE	26	A_{3}	43	N.C.	60	N.C.
10	A_{11}	27	A_{2}	44	N.C.	61	REG
11	A9	28	A_{1}	45	N.C.	62	BVD2
12	A_{8}	29	A0	46	A_{17}	63	BVD1
13	A_{13}	30	Do	47	A_{18}	64	D8
14	A_{14}	31	D 1	48	A 19	65	D9
15	WE	32	D_{2}	49	A20/N.C.*	66	D10
16	R/B/N.C.*	33	WP	50	$\mathrm{A}_{21} /$ N.C.*	67	CD2
17	Vcc	34	GND	51	Vcc	68	GND

*: See "DESCRIPTIONS".

PIN DESCRIPTIONS

Symbol	Pin Name	Input/Output	Function
Ao to A_{25}	Address Input	Input	Address Inputs, A0 to A25.
Doto D_{15}	Data Input/Output	Input/Output	Data Inputs/Outputs. This data bus size (8-bit or 16 -bit) is selected with CE1 and CE2.
CE1	Card Enable for Lower Byte	Input	Active Low. -Lower byte (D_{0} to D_{7}) is selected for read/write/ erase function of flash memory cards.
CE2	Card Enable for Upper Byte	Input	Active Low. -Upper byte (D_{8} to D_{15}) is selected for read/write / erase function of flash memory cards.
REG	Attribute Memory Select	Input	Active Low. -Attribute memory is selected for read/write function of identification data of flash memory cards. (N.C. or "FF" data or attribute data.)
OE	Output Enable	Input	Active Low. -Output enable for flash memory cards.
WE	Write Enable	Input	Active Low. -Write enable for flash memory cards.
CD1, CD2	Card Detect	Output	These pins detect if the card has been correctly inserted. Both pins are tied to GND internally.
WP	Write Protect	Output	Write controller for flash memory cards. This pin outputs the Protect/Non Protect status of "WP Switch".
BVD1, BVD2	Battery Voltage Detect	Output	Both pins are tied to Vcc internally.
RESET	Hardware Reset	Input	The card may be reset by driving the RESET pin to V_{I}.
R/B	Ready/Busy	Output	System can be detect the completion of program or erase operation.
Vcc	Power Supply	-	Power Supply Voltage. (+5.0 V $\pm 5 \%$)
GND	Ground	-	System Ground.
N.C.	Non Connection	-	

PIN LOCATIONS

Fig. 1 - BOTTOM VIEW (CONNECTOR SIDE)

BLOCK DIAGRAM

MB98A81063, MB98A81183, MB98A81273 and MB98A81373

*1: Not available for MB98A81063.
Fig. 2.1 - Block Diagram

BLOCK DIAGRAM (Continued)

MB98A81473, MB98A81573 and MB98A81674

Fig. 2.2-Block Diagram

CHIP AND SECTOR DECODING

- Chip can be selected with;
- $\mathrm{A}_{0}, \mathrm{~A}_{22}, \mathrm{~A}_{23}, \mathrm{~A}_{24}$ and A_{25} for $\times 8$-bit mode No. 1 .
- A22, A23, A ${ }_{24}$ and A 25 for $\times 8$-bit mode No. 2 and $\times 16$-bit mode.
- Sector per each chip can be selected with $A_{17}, A_{18}, A_{19}, A_{20}$ and A_{21}.

ERASE SECTOR DECODING TABLE

Sector 31
Sector 30
Sector 29
\vdots
Total 32 sectors*1*2
per 1 chip
\vdots
Sector 2
Sector 1
Sector 0

Sector Address (SA)				
$\mathrm{A}_{21}{ }^{*} 2$	$\mathrm{~A}_{20}{ }^{*} 1$	$\mathrm{~A}_{19}$	$\mathrm{~A}_{18}$	$\mathrm{~A}_{17}$
1	1	1	1	1
1	1	1	1	0
1	1	1	0	1
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
0	0	0	1	0
0	0	0	0	1
0	0	0	0	0

*1: A20 is not available for MB98A81063. MB98A81063 has 8 sectors.
${ }^{*} 2$: A_{21} is not available for MB98A81063 and MB98A81183. MB98A81063 has 8 sectors and MB98A81183 has 16 sectors.

CARD CHIP / SECTOR CONFIGURATION

$\mathrm{D}_{15} \longleftarrow \mathrm{D}_{8}$	$\mathrm{D}_{7} \longleftarrow \mathrm{D}_{0}$	$\times 16$ bit mode		
UPPER BYTE	LOWER BYTE			
	EVEN ADDRESS BYTE	$\times 8$ bit mode No. 1		
	ODD ADDRESS BYTE			
			Chip 1 (16M Flash Chip ${ }^{* 1}$)	Chip 0 (16M Flash Chip ${ }^{* 1}$)
Chip 31	Chip 30	4 Sector 31*2(64K $\times 8$ bits)		Sector $31^{* 2}(64 \mathrm{~K} \times 8$ bits)
Chip 29	Chip 28	-	-	
Chip 27	Chip 26	/	:	\bullet
\bullet	\bullet		-	-
\bullet	-			-
Chip 5	Chip 4		Sector 2 (64K $\times 8$ bits)	Sector 2 (64K $\times 8$ bits)
Chip 3	Chip 2	,	Sector 1 ($64 \mathrm{~K} \times 8 \mathrm{bits}$)	Sector 1 ($64 \mathrm{~K} \times 8 \mathrm{bits}$)
Chip1	Chip 0		Sector 0 ($64 \mathrm{~K} \times 8$ bits)	Sector 0 ($64 \mathrm{~K} \times 8$ bits)

Card Chip Configuration for 64MB Card
Sector Configuration for 2 Chips
*1:4M Flash Chip for MB98A81063. 8M Flash chip for MB98A81183.
*2: Sector 7 for MB98A81063. Sector 15 for MB98A81183.

FUNCTION DESCRIPTIONS

1. Read Mode

The data in the common and attribute memory can be read with " $\mathrm{OE}=\mathrm{V}_{\mathrm{I}}$ " and " $\mathrm{WE}=\mathrm{V}_{\mathrm{l}}$ ". The address is selected with Ao to A25. And CE1 and CE2 select output mode ($\times 8 / \times 16$ output mode, See "FUNCTION TRUTH TABLES".). The following 1) and 2) are the descriptions for Common Memory Read and Attribute Memory Read mode.
(1) Common Memory Read

- Two modes of Common Memory Read, reading the data in memory array and Intelligent ID are available. The card enter each Read mode by writing "Read Memory/Reset Command" or "Intelligent ID Read Command". The card automatically resets to the condition of Common Memory Read mode upon initial power-up.
(2) Attribute Memory Read

- An address on attribute memory can be selected with A_{0} to A_{11} pin. And CE1 and CE2 select output mode.

2. Standby Mode

- CE1 and CE2 at "VI"" place the card in Standby mode. Do to D_{15} are placed in a high-Z state independent of the status "OE", "WE" and "REG".

3. Output Disable Mode

- The outputs are disabled with $\overline{O E}$ and $W E$ at " $\mathrm{V}_{1 н}$ ". D_{0} to D_{15} are placed in high- Z state.

4. Write Mode
(1) Common Memory Write

- The card is in Write mode with " $\overline{\mathrm{O}}=\mathrm{V}_{14}$ " and " WE and $\overline{C E}=\mathrm{V}_{\mathrm{LL}}$ ".
- Commands can be written at the Write mode. See "5.Command Definitions".
- Two types of the Write mode, "WE control" and "CE control" are available.
(2) Attribute Memory Write
- REG at L-level selects Attribute memory and " $\overline{O E}=\mathrm{V}_{\boldsymbol{\prime}}$ ", "WE and $\overline{C E}=\mathrm{V}_{\mathrm{L}}$ " place it in write mode. Two types of the write mode, "WE control" and "CE control" are available.
- Attribute memory is not controlled by writing Commands. And attribute memory has the Data polling function, which can detect whether the attribute memory status is in programming operation. When the read operation is executed at programming cycle, the opposite data is output from $\mathrm{D}_{7}(17)$, and the same data $\left(\mathrm{O}_{7}\right)$ as the written data is output from D_{7} pin at the completion of programming operation.

5. Command Definitions

- User can select the card operation by writing the specific address and data sequences into the command register. If incollect address and data are written or improper sequence is done, the card is reseted to read mode. See "COMMAND DEFINISION TABLE".

6. Automated Program Capability

- Programming operation can swich the data from " 1 " to " 0 ".
- The data is programmed on a byte-by-byte or word-by-word basis.
- The card will automatically provide adequate internally generated programming pulses and verify the programmed cell margine by writing four bus cycle operation. The card returns to Common Memory Read mode automatically after the programming is completed.
- Addresses are latched at falling edge of WE or CE and data is latched at rising edge of WE or CE. The fourth rising edge of WE or CE on the command write cycle begins programming operation.
- We can check whether a byte (word) programming operation is completed successfully by sequence flug with R/B (Except for MB98A81063), Data Polling or Toggle Bit function. See "WRITE OPERATION STATUS".
- Any commands written to the chip during programming operation will be ignored.

7. Automated Chip Erase Capability

- We can execute chip erase operation by 6 bus cycle operation. Chip erase does not require the user to preprogram prior to erase. Upon executing the Erase command sequence the chip automatically will program and verify the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timing during these operations.
- The card returns to Common Memory Read mode automatically after the chip erasing is completed.

FUNCTION DESCRIPTIONS (Continued)

- Whether or not chip erase operation is completed successfully can be checked by sequence flug with R/B (Except for MB98A81063), Data Polling or Toggle Bit function. See "WRITE OPERATION STATUS".
- Any commands written to the chip during programming operation will be ignored.

8. Automated Sector Erase Capability

- We can execute the erase operation on any sectors by 6 bus cycle operation.
- A time-out of $50 \mu \mathrm{~s}$ (typ.) from the rising edge of the last Sector Erase command will initiate the Sector Erase command(s) for other sector than the sector that sector erase command have been valid.
- Multiple sectors in a chip can be erased concurrently. This sequence is followed with writes of 30 H to addresses in other sectors desired to be concurrently erased. The time between writes 30 H must be less than $50 \mu \mathrm{~s}$, otherwise that command will not be accepted. Any command other than Sector Erase or Erase Suspend during this time-out period will reset the chip to Read mode. The automated sector erase begins after the $50 \mu \mathrm{~s}$ (typ.) time out from the rising edge of WE pulse for the last Sector Erase command pulse. Whether the sector erase window is still open can be monitored with D_{3} and D_{11}.
- Sector Erase does not require the user to pre-program prior to erase. The chip automatically programs "0" to all memory locations in the sector(s) prior to electrical erase. The system is not required to provide any controls or timing during these operations.
- The card returns to Common Memory Read mode automatically after the sector erasing is completed.
- Whether or not sector erase operation is completed successfully can be checked by sequence flug with R / B, Data Polling or Toggle Bit function. The sequence flug must be read from the address of the sector involved in erase operation. See "WRITE OPERATION STATUS".

9. Erase Suspend

- Erase Suspend command allows the user to interrupt the sector erase operation and then do data reads or program from or to a non-busy sector in the chip which has the sector(s) suspended erase (only data read is possible for MB98A81063). This command is applicable only during the sector erase operation (including the sector erase time-out period after the sector erase commands 30 H) and will be ignored if written during the chip erase or programming operation. Writing this command during the time-out will result in immediate termination of the time-out period. The addresses are "don't cares" in wrinting the Erase Suspend or Resume commands in the chip.
- When the Erase Suspend command is written during a Sector Erase operation, the chip will enter the Erase Suspend Read mode. User can read the data from other sectors than those in suspention. The read operation from sectors in suspention results $\mathrm{D}_{2} / \mathrm{D}_{10}$ toggling for MB98A81183 and MB98A8xx7x. User can program to non-busy sectors by writing program commands for MB98A81183 and MB98A8xx7x.
- A read from a sector being erase suspended may result in invalid data.

10. Intelligent Identifier (ID) Read Mode

- Each common memory can execute an Intelligent Identifier operation, initiated by writing Intelligent ID command $(90 \mathrm{H})$. Following the command write, a read cycle from address 00 H retrieves the manufacture code, and a read cycle from address 01 H returns the device code as follows. To terminate the operation, it is necessary to write Read/Reset command.

Part Number	Maker Code	Device Code
MB98A81063	$04 \mathrm{~h} / 0404 \mathrm{~h}$	A4 h / A4A4 h
MB98A81183	$04 \mathrm{~h} / 0404 \mathrm{~h}$	$\mathrm{D} 5 \mathrm{~h} / \mathrm{D} 5 \mathrm{D} 5 \mathrm{~h}$
MB98A81273/81373/1473/81573/81674	$04 \mathrm{~h} / 0404 \mathrm{~h}$	$3 \mathrm{~h} /$ 3D3D h

11. Hardware Reset (not applied for MB98A81063)

- The Card may be reset by driving the RESET pin to $\mathrm{V}_{\boldsymbol{\prime}}$. The RESET pin must be kept High ($\mathrm{V}_{\boldsymbol{\prime}}$) for at least 500 ns . Any operation in progress will be terminated and the card will be reset to the read mode $20 \mu \mathrm{~s}$ after the RESET pin is driven High. If a hardware reset occurs during a program operation, the data at that particular location will be indeterminate.
- When the RESET pin is high and the internal reset is complete, the Card goes to standby mode and cannot be accessed. Also, note that all the data output pins are High-Z for the duration of the RESET pulse. Once the RESET pin is taken low, the Card requires 500 ns of wake up time until outputs are valid for read access.
- If hardware reset occurs during a erase operation, there is a possibility that the erasing sector(s) cannot be used after this.

FUNCTION DESCRIPTIONS (Continued)

12. Data Protection

- The card has WP (Write Protect) switch for write lockout.(Except for MB98A81674)
- To avoid initiation of a write cycle during Vcc power-up and power-down, a write cycle is locked out for Vcc less than 3.2 V (typically 3.7 V). If V cc < V Lko, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the Vcc level is greater than Vடкo. It is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when Vcc is above 3.2 V .
- If Vcc would be less than VLko during program/erase operation, the operation will stop. And after that, the operation will not resume even if V cc returns recommended voltage level. Therefore, program command must be written again because the data on the address interrupted program operation is invalid. And regarding interrupting erase operation, there is possibility that the erasing sector(s) cannot be used.
- Noise pulses of less than 5 ns (typical) on OE, CE or WE will not initiate a write cycle.

■ FUNCTION TRUTH TABLE
MAIN MEMORY FUNCTION*1

Notes:

*2: L-level is output when WPSW = NP. H-level is output when WPSW = P.
L-level is always output for MB98A81674.
*3: Not available for MB98A81063.
*4: Not available for MB98A81674.

FUNCTION TRUTH TABLE (Continued)

ATTRIBUTE MEMORY FUNCTION*1

Mode	RESET*3	REG	CE2	CE1	Ao	OE	WE	$\begin{gathered} \text { WP } \\ * 2 \end{gathered}$	Data Input/Output		WP SW*4
									D8 to D_{15}	D_{0} to D_{7}	
Standby	L	X	H	H	X	X	X	X	High-Z		P or NP
Read ($\times 8$ No.1)		L	H	L	L	L	H	X	High-Z	Dout	
Read ($\times 8$ No.1)					H				High-Z	H	
Read ($\times 8$ No.2)			L	H	X				H	High-Z	
Read (×16)				L						Dout	
Write ($\times 8$ No.1)			H	L	L	H	L	L	High-Z	Din	NP
Output Disable								H		High-Z	P
Write ($\times 8$ No.1)					H			L		$\begin{gathered} \hline \text { INVALID } \\ \text { Din } \end{gathered}$	NP
Output Disable								H		High-Z	P
Write ($\times 8$ No.2)			L	H	X			L	$\underset{\substack{\text { INin }}}{ }$		NP
Output Disable								H	High-Z		P
Write ($\times 16$)				L				L	$\begin{aligned} & \text { INVALID } \\ & \mathrm{Din}_{\text {IN }} \end{aligned}$	Din	NP
Output Disable								H	High-Z		P
Output Disable		X	X	X	X	H	H	X			P or NP

Notes:

${ }^{*} 1: H=\mathrm{V}_{\mathrm{H}}, \mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{X}=$ Either V_{IL} or $\mathrm{V}_{\text {н }}$, WP SW = Write Protect Switch, P = Protect, NP = Non Protect
*2: L-level is output when WPSW = NP. H-level is output when WPSW = P.
L-level is always output for MB98A81674.
*3: Not available for MB98A81063.
*4: Not available for MB98A81674.

COMMAND DEFINITION TABLE

Command table for 8-bit Mode

Command	Bus Cycle	1st Bus Write Cycle		2nd Bus Write/Read Cycle		3rd Bus Write Cycle		4th Bus Write/Read Cycle		5th Bus Write Cycle		6th Bus Write Cycle	
Read/Reset 1	2	Write		Read									
		CA	FOH	RA	RD								
Read/Reset 2	4	Write		Write		Write		Read					
		RCMA1	AAH	RCMA2	55H	RCMA1	FOH	RA	RD				
Read	4	Write		Write		Write		Read					
ID Codes		ICMA1	AAH	ICMA2	55H	ICMA1	90H	IA	ID				
Byte Program	4	Write		Write		Write		Write					
		PCMA1	AAH	PCMA2	55H	PCMA1	AOH	PA	PD				
Sector Erase	6	Write											
		SCMA1	AAH	SCMA2	55H	SCMA1	80H	SCMA1	AAH	SCMA2	55H	SA	30H
Chip Erase	6	Write											
		CCMA1	AAH	CCMA2	55H	CCMA1	80H	CCMA1	AAH	CCMA2	55H	CCMA1	10H
Sector Erase Suspend	1	Write											
		CA	B0H										
Sector Erase Resume	1	Write											
		CA	30H										

Notes:

CCMA1, CCMA2:
SCMA1, SCMA2:
PCMA1, PCMA2:
RCMA1, RCMA2:
ICMA1, ICMA2:

CA: Chip Address.
SA: Sector Address
PA: Program Address
RA: Read Address
IA: Intelligent ID read address (Manufacture Code 0000H, Device Code 0002H)
PD: Programming data
RD: Read data
ID: Intelligent Identifier (ID) Code
(address in chip selected by $\mathrm{A}_{0}, \mathrm{~A}_{22}, \mathrm{~A}_{23}, \mathrm{~A}_{24}$ and A_{25})
(address in 64 KB selected by $\mathrm{A}_{0}, \mathrm{~A}_{17}, \mathrm{~A}_{18}, \mathrm{~A}_{19}, \mathrm{~A}_{20}, \mathrm{~A}_{21}, \mathrm{~A}_{22}, \mathrm{~A}_{23}, \mathrm{~A}_{24}$ and A_{25})
(address to be programmed)
(address to be read)

Command adddress for chip erase
Command address for sector erase
Command address for program
Command address for Read/Reset
Command address for intelligent ID read
(

See "Command Address Table for 8 -bit Mode" in page 16.

Command Table for 16-bit Mode*1

Command	Bus Cycle	1st Bus Write Cycle		2nd Bus Write/Read Cycle		3rd Bus Write Cycle		4th Bus Write/Read Cycle		5th Bus Write Cycle	6th Bus Write Cycle	
Read/Reset 1	2	Write		Read								
		-	FOFOH	RA	RD							
Read/Reset 2	4	Write		Write		Write		Read				
		RCMA1	AAAAH	RCMA2	5555H	RCMA1	FOFOH	RA	RD			
Read Intelligent ID Codes	4	Write		Write		Write		Read				
		ICMA1	AAAAH	ICMA2	5555H	ICMA1	9090H	IA	ID			
Byte Program	4	Write		Write		Write		Write				
		PCMA1	AAAAH	PCMA2	5555H	PCMA1	AOAOH	PA	PD			
Sector Erase	6	Write		Write		Write		Write		Write	Write	
		SCMA1	AAAAH	SCMA2	5555H	SCMA1	8080H	SCMA1	AAAAH	SCMA2 5555 H	SA	3030H
Chip Erase	6	Write		Write		Write		Write		Write	Write	
		CCMA1	AAAAH	CCMA2	5555H	CCMA1	8080H	CCMA1	AAAAH	CCMA2 5555 H	CCMA1	1010H
Sector Erase Suspend	1	Write										
		CA	BOBOH									
Sector Erase Resume	1	Write										
		CA	3030H									

Notes:

CA: Chip Address. (address in chip selected by $\mathrm{A}_{22}, \mathrm{~A}_{23}, \mathrm{~A}_{24}$ and A_{25})
SA: Sector Address (address in 128 KB selected by $\mathrm{A}_{17}, \mathrm{~A}_{18}, \mathrm{~A}_{19}, \mathrm{~A}_{20}, \mathrm{~A}_{21}, \mathrm{~A}_{22}, \mathrm{~A}_{23}, \mathrm{~A}_{24}$ and A_{25})
PA: Program Address (address to be programmed)
RA: Read Address (address to be read)
IA: Intelligent ID read address (Manufacture Code 0000H, Device Code 0001H)
PD: Programming data
RD: Read data
ID: Intelligent Identifier (ID) Code

CCMA1, CCMA2: Command address for chip erase
SCMA1, SCMA2: Command address for sector erase
PCMA1, PCMA2: Command address for program
RCMA1, RCMA2: Command address for Read/Reset
ICMA1, ICMA2: Command address for intelligent ID read

See "Command Address Table for 16-bit Mode" in page 16.
*1: Address number is not contained "Ao".

COMMAND DEFINITION TABLE (Continued)

Command Address Table for 8-bit Mode

Command Address	MB98A81063	MB98A81183	MB98A81273, 81373, 81473, $\mathbf{8 1 5 7 3 , 8 1 6 7 4}$
CCMA1	(CA AND 000001h) OR AAAAh	(CA AND 000001h) OR AAAh	CA
CCMA2	(CA AND 000001h) OR 5554h	(CA AND 000001h) OR 554h	CA
SCMA1	(SA AND 000001h) OR AAAAh	(SA AND 000001h) OR AAAh	CA
SCMA2	(SA AND 000001h) OR 5554h	(SA AND 000001h) OR 554h	CA
PCMA1	(PA AND 000001h) OR AAAAh	(PA AND 000001h) OR AAAh	CA
PCMA2	(PA AND 000001h) OR 5554h	(PA AND 000001h) OR 554h	CA
RCMA1	(RA AND 000001h) OR AAAAh	(RA AND 000001h) OR AAAh	CA
RCMA2	(RA AND 000001h) OR 5554h	(RA AND 000001h) OR 554h	CA
ICMA1	(IA AND 000001h) OR AAAAh	(IA AND 000001h) OR AAAh	CA
ICMA1	(IA AND 000001h) OR 5554h	(IA AND 000001h) OR 554h	CA

Command Address Table for 16-bit Mode

Command Address	MB98A81063	MB98A81183	$\begin{gathered} \hline \text { MB98A81273, } 81373,81473, \\ 81573,81674 \end{gathered}$
CCMA1	5555h	555h	CA
CCMA2	2AAAh	2AAh	CA
SCMA1	5555h	555h	CA
SCMA2	2AAAh	2AAh	CA
PCMA1	5555h	555h	CA
PCMA2	2AAAh	2AAh	CA
RCMA1	5555h	555h	CA
RCMA2	2AAAh	2AAh	CA
ICMA1	5555h	555h	CA
ICMA1	2AAAh	2AAh	CA

WRITE OPERATION STATUS

Hardware Sequence Flag Table

Status			$\mathrm{D}_{7}, \mathrm{D}_{15}$	$\mathrm{D}_{6}, \mathrm{D}_{14}$	$\mathrm{D}_{5}, \mathrm{D}_{13}$	$\mathrm{D}_{3}, \mathrm{D}_{11}$	$\mathrm{D}_{2}, \mathrm{D}_{10}{ }^{*} 4$	R/B*4
In Progress	Programming		$\mathrm{D}_{7}, \mathrm{D}_{15}$	Toggle	0	0	1	0
	Erasing		0	Toggle	0	1	Toggle	0
	Erase Suspend Read	(1)	1	1	0	0	*1	1
		(2)	Data	Data	Data	Data	Data	1
	Erase Suspend*4 Program		$\mathrm{D}_{7}, \mathrm{D}_{15}$	*2	0	0	*1, *3	0
Exceeded Time Limits	Programming		$\mathrm{D}_{7}, \mathrm{D}_{15}$	Toggle	1	0	1	0
	Erasing		0	Toggle	1	1	N/A	0
	Erase Suspend*4 Program		D_{7}, D_{15}	Toggle	1	0	N/A	0

Notes:

(1): Erase Suspended Sector (2): Non-Erase Suspended Sector
*1. Performing successive read operations from the erase-suspended sector will cause D_{2}, D_{10} to toggle.
*2. Performing successive read operations from any address will cause $\mathrm{D}_{6}, \mathrm{D}_{14}$ to toggle.
*3. Reading the byte address being programmed while in the erase-suspend program mode will indicate logic " 1 " at the $\mathrm{D}_{2}, \mathrm{D}_{10}$ bit. However, successive reads from the erase-suspended sector will cause $\mathrm{D}_{2}, \mathrm{D}_{10}$ to toggle.
*4. Not applied for MB98A81063.

$\mathrm{D}_{7}, \mathrm{D}_{15}$ (Data Polling)

The card features Data Polling as a method to indicate to the host that the Program/Erase Operation are in progress or completed. During the program operation an attempt to read the program address will produce the compliment of the data last written to $\mathrm{D}_{7} / \mathrm{D}_{15}$. Upon completion of the program operation, an attempt to read the program address will produce the true data last written to $\mathrm{D}_{7} / \mathrm{D}_{15}$. During the erase operation, an attempt to read the erase address will produce a " 0 " at the $\mathrm{D}_{7} / \mathrm{D}_{15}$ output. Upon completion of the erase operation an attempt to read the device will produce a "1" at the $\mathrm{D}_{7} / \mathrm{D}_{15}$ output.
For Chip Erase, the Data Polling is valid after the rising edge of the sixth WE pulse in the six write pulse sequence. For sector erase, the Data Polling is valid after the last rising edge of the sector erase WE pulse. Even if the device has completed the operation and D_{7} / D_{15} has a valid data, the data outputs on D_{0} to D_{6} / D_{8} to D_{14} may be still invalid. The valid data on D_{0} to D_{7} / D_{8} to D_{15} will be read on the successive read attempts.
The Data Polling feature is only active during the programming operation, erase operation, sector erase timeout, Erase Suspend Read mode and Erase Suspend Program mode.

$\mathrm{D}_{6}, \mathrm{D}_{14}$ (Toggle Bit I)

The card also features the "Toggle Bit" as a method to indicate to the host system that the Program/Erase Operation are in progress or completed.
During an Program or Erase cycle, successive attempts to read ($\overline{\mathrm{OE}}$ or $\overline{C E}$ toggling) data from the card will result in $\mathrm{D}_{6} / \mathrm{D}_{14}$ toggling between one and zero. Once the Program or Erase cycle is completed, $\mathrm{D}_{6} / \mathrm{D}_{14}$ will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit is valid after the rising edge of the fourth WE pulse in the four write pulse sequence. For chip erase, the Toggle Bit is valid after the rising edge of the sixth WE pulse in the six write pulse sequence. For sector erase, the Toggle Bit is valid after the last rising edge of the sector erase WE pulse. The Toggle Bit is also active during the sector time out.
Either CE or $\overline{O E}$ toggling will cause the $\mathrm{D}_{6} / \mathrm{D}_{14}$ to toggle.

$\mathrm{D}_{5}, \mathrm{D}_{13}$ (Exceeded Timing Limits)

$\mathrm{D}_{5} / \mathrm{D}_{13}$ will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions $\mathrm{D}_{5} / \mathrm{D}_{13}$ will produce a " 1 ". This is a failure condition which indicates that the program or erase cycle was not successfully completed. Data Polling is the only operating function of the card under this condition. If this failure condition occurs during sector erase operation, it specifies that a particular sector is bad and it may not be reused, however, other sectors are still functional and may be used for the program or erase operation. The chip must be reset to use other sectors. Write the Reset command sequence to the chip, and then execute Program or Erase command sequence. This allows the system to continue to use the other active sectors in the chip.
If this failure condition occurs during the chip erase operation, it specifies that the entire chip is bad or combination of sectors are bad.
If this failure condition occurs during the byte programming operation, it specifies that the entire sector containing that byte is bad and this sector may not be reused, (other sectors are still functional and can be reused).
The D_{5} / D_{13} failure condition may also appear if a user tries to program a non blank location without erasing. In this case the card locks out and never completes the card operation. Hence, the system never reads a valid data on D_{7} / D_{15} bit and D_{6} / D_{14} never stops toggling. Once the card has exceeded timing limits, the D_{5} / D_{13} bit will indicate a " 1 ". Please note that this is not a device failure condition since the device was incorrectly used.

$\mathrm{D}_{3}, \mathrm{D}_{11}$ (Sector Erase Timer)

After the completion of the initial sector erase command sequence the sector erase time-out will begin. $\mathrm{D}_{3} / \mathrm{D}_{11}$ will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.
If Data Polling or the Toggle Bit indicates the card has been written with a valid erase command, $\mathrm{D}_{3} / \mathrm{D}_{11}$ may be used to determine if the sector erase timer window is still open. If D_{3} / D_{11} is high (" 1 ") the internally controlled erase cycle has begun; attempts to write subsequent commands to the card will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit. If D_{3} / D_{11} is low (" 0 "), the card will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of D_{3} / D_{11} prior to and following each subsequent sector erase command. If D_{3} / D_{11} were high on the second status check, the command may not have been accepted.
Refer to Table : Hardware Sequence Flags.

$\mathrm{D}_{2}, \mathrm{D}_{10}$ (Toggle Bit II, not applied for MB98A81063)

This Toggle bit, along with D_{6}, can be used to determine whether the card is in the Erase operation or in Erase Suspend.
Successive reads from the erasing sector will cause D_{2} to toggle during the Erase operation. If the card is in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause D_{2} to toggle. When the card is in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic '1' at the D_{2} bit.
D_{6} is different from D_{2} in that D_{6} toggles only when the standard Program or Erase, or Erase Suspend Program operation is in progress.

R/B (Ready/Busy, not applied for MB98A81063)

The card provides a R/B output pin as a way to indicate to the system that the program or erase operation are either in progress or has been completed. If the output is low, the card is busy with either a program or erase operation. If the card is placed in an Erase Suspend mode, the R/B output will be high.
During programming, the R/B pin is driven low after the rising edge of the fourth WE pulse. During an erase operation, the R/B pin is driven low after the rising edge of the sixth WE pulse. The R/B pin will indicate a busy condition during the RESET pulse.

Fig. 3 - PROGRAM FLOWCHART

*1 See Fig. 7, 6, 9, 10.
*2 See "COMMAND DEFINITION TABLE".

Notes:

PD : PROGRAM DATA
PA : PROGRAM ADDRESS

Fig. 4 - CHIP ERASE FLOWCHART

*1 See Fig. 7, 8, 9, 10.
*2 See "COMMAND DEFINITION TABLE".
Note:
CA : CHIP ADDRESS

Fig. 5-SECTOR ERASE FLOWCHART

*1 See Fig.7, 8, 9, 10.
*2 Possible for the sectors in a chip
*3 See "COMMAND DEFINITION TABLE".

Note:

SA : SECTOR ADDRESS

Fig. 6 - ERASE SUSPEND FLOWCHART

*1 Detection whether suspend mode is valid can be done by Data Polling and R / B also. (MB98A81063 does not have R/B).
*2 Only Read operation for MB98A81063.

Notes:

CA: CHIP ADDRESS
SA: SECTOR ADDRESS
RA: READ ADDRESS

Fig. 7 - DATA POLLING FLOWCHART: $\times 8$-bit mode No. 1

*1 User sets the time period referring to
"PROGRAM AND ERASE PERFORMANCES".
*2 ProgramVA=PA
Chip EraseVA=CA
Sector EraseVA=SA

Fig. 8 - TOGGLE BIT FLOWCHART: $\times 8$-bit mode No. 1

*1 User sets the time period referring to "PROGRAM AND ERASE PERFORMANCES".
*2 Program VA=PA Chip Erase VA=CA Sector EraseVA=SA

PROGRAM / ERASE FLOWCHART (Continued)

Fig. 9 - DATA POLLING FLOWCHART: $\times 16$-bit mode

PROGRAM / ERASE FLOWCHART (Continued)

Fig. 10-TOGGLE BIT FLOWCHART: $\times 16$-bit mode

*1 User sets the time period referring to "PROGRAM AND ERASE PERFORMANCES".
*2 Program VA=PA
Chip Erase VA=CA
Sector EraseVA=SA

Notes:
EF: Error Flag
EF=0: Operation Completed
$\mathrm{EF}=1$: Lower Byte Error
EF=2: Upper Byte Error
EF=3: Lower/Upper Byte Error

ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Supply Voltage	V_{cc}	-0.5 to +6.0	V
Input Voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Output Voltage	$\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Temperature under Bias	T_{A}	0 to +60	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tsta	-30 to +70	${ }^{\circ} \mathrm{C}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS
(Referenced to Vss)

Parameter	Symbol	Min.	Typ.	Max.	Unit
V $c \mathrm{C}$ Supply Voltage	V_{cc}	4.75	5.0	5.25	V
Ground	GND		0		V
Ambient Temperature	T_{A}	0		55	${ }^{\circ} \mathrm{C}$

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

CAPACITANCE

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\prime \mathrm{O}}=\mathrm{GND}\right)$					
Parameter	Symbol	Min.	Max.	Unit	
Input Capacitance *1	C_{IN}		75	pF	
I / O Capacitance *2	$\mathrm{C}_{/ \mathrm{o}}$		50	pF	

Notes:

*1 This value does not apply to CE1, CE2, WE, REG and RESET.
*2 This value does not apply to CD1, CD2, BVD1 and BVD2.

DC CHARACTERISTICS

Parameter	Test Conditons	Symbol	Value			Unit
			Min.	Typ.	Max.	
Input Leakage Current *1	$\mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {cc }}$ max., $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$	lL		± 1.0	± 20	$\mu \mathrm{A}$
Output Leakage Current *2	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {cc }}$ max., $\mathrm{V}_{\text {If }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$	ILo		± 1.0	± 20	$\mu \mathrm{A}$
Standby Current	$\begin{aligned} & V_{c c}=V_{c c} \max . \\ & C E 1, C E 2=V_{c c} V_{I N}=0 \mathrm{~V} \text { or } V_{c c} \end{aligned}$	Isb1		$0.5 * 4$	$1.7{ }^{* 4}$	mA
				$0.6 * 5$	$3.0 * 5$	
	$\begin{aligned} & V_{c c}=V_{c c} \max ., \mathrm{CE} 1, \mathrm{CE} 2=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Isb2		4.0	8.0	mA
Active Read Current	$\mathrm{V}_{c \mathrm{c}}=\mathrm{V}_{\mathrm{cc}}$ max., CE1, CE2 $=\mathrm{V}_{\mathrm{L}}$ Cycle $=200 \mathrm{~ns}$, lout $=0 \mathrm{~mA}$	Icc1		$100 * 4$	$160 * 4$	mA
				150*5	200*5	
Program Current	Program in progress ($\times 16$ mode)	Icc2			120	mA
Erase Current	Erase in progress ($\times 16$ mode)	Icca			120	mA
Input Low Voltage	-	VIL	-0.3	-	0.8	V
Input High Voltage	-	V_{H}	2.4	-	Vcc+0.3	V
Output Low Voltage	$\mathrm{loL}=3.2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{min}$.	Voı			0.4	V
Output High Voltage *3	$\mathrm{loh}^{2} 2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{min}$.	Vон	3.8			V
Low Vcc Lock-out Voltage	Common Memory Attribute Memory	Vıko	3.2	$\begin{aligned} & 3.7 \\ & 3.8 \end{aligned}$	4.2	V

Notes:

*1 This value does not apply to CE1, CE2, WE and REG.
*2 This value does not apply to BVD1, BVD2, CD1 and CD2.
*3 This value does not apply to BVD1 and BVD2.
*4 MB98A81063/81183/81273/81373/81473/81573
*5 MB98A81674

AC TEST CONDITIONS

Fig. 11 - AC TEST CONDITIONS

- Input Pulse Levels: $\mathrm{V}_{\mathrm{H}}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.6 \mathrm{~V}$

- Input Pulse Rise and Fall Times: 5 ns
(Transient between 0.8 V and 2.4 V)
- Timing Reference Levels

Input: $\mathrm{V}_{\mathrm{LL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2.4 \mathrm{~V}$
Output: Voı $=0.8 \mathrm{~V}$, Vон $=2.0 \mathrm{~V}$

* Including jig and stray capacitance

	R1	R2	CL	Parameter Measured
Load I	$1.8 \mathrm{~K} \Omega$	990Ω	100 pF	All parameters except tCLZ, toLZ, tCHZ, tOHZ, tRCLZ, tROLZ, tRCHZ and tROHZ
Load I I	$1.8 \mathrm{~K} \Omega$	990Ω	5 pF	tCLZ, toLz, tCHZ, tOHZ, tRCLZ, tROLZ, tRCHZ and tROHZ

PROGRAM AND ERASE PERFORMANCES

MAIN MEMORY PROGRAM / ERASE PERFORMANCE
(MB98A81063)

Parameter	Min.	Typ.	Max.	Unit
Byte Program Time*1		8	500	$\mu \mathrm{~s}$
Chip Programming Time *1		4.2	25	Sec.
Sector Erase Time *2		1	15	Sec.
Program/Erase Cycles	100,000			Cycles

Notes:

*1 Excludes system-level overhead.
*2 Excludes 00 H programming prior to erasure.
(MB98A81183)

Parameter	Min.	Typ.	Max.	Unit
Byte Program Time *1		8	500	$\mu \mathrm{~s}$
Chip Programming Time *1		8.4	50	Sec.
Sector Erase Time *2		1	15	Sec.
Program/Erase Cycles	100,000			Cycles

Notes:

*1 Excludes system-level overhead.
*2 Excludes 00 H programming prior to erasure.

PROGRAM AND ERASE PERFORMANCES (Continued)

(MB98A81273, 81373, 81473, 81573, 81674)

Parameter	Min.	Typ.	Max.	Unit
Byte Programming Time *1		8	500	$\mu \mathrm{~s}$
Chip Programming Time *1		16.8	100	Sec.
Sector Erase Time *2		1	15	Sec.
Program/Erase Cycles	100,000			Cycles

Notes:

*1 Excludes system-level overhead.
*2 Excludes 00 H programming prior to erasure.

ATTRIBUTE MEMORY PROGRAM PERFORMANCE

Parameter	Min.	Typ.	Max.	Unit
Byte Program Time			1	ms
Number of Program per Byte	100,000			Times

■ AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
MAIN MEMORY READ CYCLE*1

Parameter	Symbol	Min.	Max.	Unit
Read Cycle Time	tRC	$150(200)$		ns
Card Enable Access Time	tCE		$150(200)$	ns
Address Access Time	tACC		$150(200)$	ns
Output Enable Access Time	tOE		$75(100)$	ns
Card Enable to Output in Low-Z*2	tCLZ	5		ns
Card Disable to Output in High-Z*2	tCHZ		60	ns
Output Enable to Output in Low-Z*2	tOLZ	5		ns
Output Disable to Output in High-Z*2	tOHZ		60	ns
Output Hold from Address, CE, or OE Change *3	tOH	5		ns
Ready Time from RESET	tRDY		20	ms

Notes:

*1 Rise/Fall time < 5 ns.
*2 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage. This parameter is specified using Load II in Fig. 11.
*3 This parameter is specified from the rising edge of $\overline{O E}, \mathrm{CE} 1$ or CE2, whichever occurs first. Values of () are for MB98A81674.

AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)
MAIN MEMORY PROGRAM / ERASE CYCLE*1 *2

Parameter	Symbol	Min.	Typ.	Max.	Unit
Write Cycle Time	tWC	150			ns
Address Setup Time	tAS	20			ns
Address Hold Time	tAH	20			ns
Data Setup Time	tDS	50			ns
Data Hold Time	tDH	20			ns
Read Recovery Time (WE control)	tGHWL	10			ns
Read Recovery Time (CE control)	tGHEL	10			ns
Output Enable Hold Time	tOEH	10			ns
Card Enable Setup Time	tCS	20			ns
Card Enable Hold Time	tCH	0			ns
Write Enable Pulse Width	tWP	80			ns
Write Enable Setup Time	tWS	0			ns
Write Enable Hold Time	tWH	0			ns
Card Enable Pulse Width	tCP	100			ns
Duration of Byte Program Operation (WE control)	tWHWH1		8		$\mu \mathrm{s}$
Duration of Erase Operation *3 (WE control)	tWHWH2		1	15	s
Duration of Byte Program Operation (CE control)	tEHEH1		8		$\mu \mathrm{S}$
Duration of Erase Operation *3 (CE control)	tEHEH2		1	15	s
Vcc Setup Time *4	tVCS	50			$\mu \mathrm{s}$
Reset Pulse Width	tRP	500			ns
Busy Delay Time	tBSY	100			ns

Notes:

*1 Read timing parameters during Program/Erase operations are the same as those during read only operations. Refer to AC characteristics for Main Memory Read Cycle.
*2 Rise/Fall time $\leq 5 \mathrm{~ns}$.
*3 These do not include the preprogramming time.
*4 Not 100\% tested.
Values of () are for MB98A81674.

AC CHARACTERISTICS (Continued)

ATTRIBUTE MEMORY READ CYCLE *1

Parameter	Symbol	Min.	Max.	Unit
Read Cycle Time	tRRC	250		ns
Address Access Time	tRAA		250	ns
Card Enable Access Time	tRCE		250	ns
Output Enable Access Time	tROE		125	ns
Output Hold from Address Change	tROH	5		ns
Card Enable to Output Low-Z *2	tRCLZ	5		ns
Output Enable to Output Low-Z *2	tROLZ	5		ns
Card Enable to Output High-Z *2	tRCHZ		60	ns
Output Enable to Output High-Z *2*3	tROHZ		60	ns

Notes:

*1 Rise/Fall time < 5 ns.
*2 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage. This parameter is specified using Load II in Fig. 3.
*3 This parameter is specified from the rising edge of $\overline{O E}$, CE1 or CE2, whichever occurs first.
ATTRIBUTE MEMORY PROGRAM CYCLE

Parameter	Symbol	Min.	Max.	Unit
Address Setup Time	tRAS	20		ns
Card Enable Setup Time	tRCS	0		ns
Output Enable Setup Time	tOES	20		ns
Write Pulse Width	tRWP	100	1000	ns
Address Hold Time	tRAH	50		ns
Data Setup Time	tRDS	50		ns
Data Hold Time	tRDH	20		ns
Card Enable Hold Time	tRCH	0		ns
Output Enable Hold Time	tROEH	20		ns
Program Time	tRWR		1	ms

TIMING DIAGRAM

MAIN / ATTRIBUTE MEMORY READ CYCLE TIMING DIAGRAM (WE = Viн, REG = Vін)* 1

READ CYCLE 1: CE1 $=\overline{O E}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE} 2=\mathrm{V}_{\mathrm{IH}}: \times 8$-bit No. 1 Bus Organization
D_{0} to D_{7}

READ CYCLE 2: $\overline{C E} 1=\mathrm{V}_{\mathrm{H}}, \overline{C E} 2=\overline{O E}=\mathrm{V}_{\mathrm{IL}}: \times 8$-bit No. 2 Bus Organization CE1 $=\mathrm{CE} 2=\overline{O E}=\mathrm{V}_{\mathrm{LL}}: \times 16$-bit Bus Organization

:Undefined

Notes:

*1 The addresses and parameters in () are applied for attribute memory access.
*2 $\mathrm{A}_{0}=$ Either Viн or VIL.

TIMING DIAGRAM（Continued）

MAIN／ATTRIBUTE MEMORY READ CYCLE TIMING DIAGRAM（Continued）（WE＝ $\mathrm{V}_{\mathrm{⿺}}, \mathrm{REG}=\mathrm{V}_{⿺ 𠃊}$ ）＊1

Note：

＊1 The addresses and parameters in（）are applied for attribute memory access．

TIMING DIAGRAM (Continued)

MAIN / ATTRIBUTE MEMORY READ CYCLE TIMING DIAGRAM(Continued)(WE = Vін, REG = Vін)*1

READ CYCLE 4: CE1 $=\mathrm{V}_{\mathbf{I}}: \times 8$-bit No. 2 Bus Organization
A_{1} to $\mathrm{A}_{25}{ }^{*} 2$ (A_{1} to A_{11})

READ CYCLE 5: CE1 $=$ CE2 $=\mathrm{V}_{\mathrm{L}}: \times 16$-bit Bus Organization
A_{1} to $\mathrm{A}_{25}{ }^{* 2}$
(A_{1} to A_{11})

$$
\begin{aligned}
& \text { Voн } \\
& \text { Vol }
\end{aligned}
$$

High-Z
DATA VALID
D_{0} to D_{15}
CE1=CE2

OE
:Undefined

Notes:
*1 The addresses and parameters in () are applied for attribute memory access.
*2 $\mathrm{A}_{0}=$ Either V_{IH} or VIL.

TIMING DIAGRAM (Continued)

MAIN MEMORY PROGRAM CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = Vıн)

Notes:

*1 See "FUNCTION TRUTH TABLE".
*2 PCMA1/PCMA2 = Command Address for Program, PA = Program Address, PD = Program Data. See "COMMAND DEFINITION TABLE".

TIMING DIAGRAM (Continued)

MAIN MEMORY PROGRAM CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = Vін)

Notes:

*1 See "FUNCTION TRUTH TABLE".
*2 PCMA1/PCMA2 = Command Address for Program, PA = Program Address, PD = Program Data. See "COMMAND DEFINITION TABLE".

TIMING DIAGRAM (Continued)

MAIN MEMORY ERASE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = Vוн)

Notes:

*1 See "FUNCTION TRUTH TABLE".
*2 CCMA1/CCMA2 = Command Address for Chip Erase, SCMA1/SCMA2 = Command Address for Sector Erase, SA = Sector Address. See "COMMAND DEFINITION TABLE".

TIMING DIAGRAM (Continued)

MAIN MEMORY ERASE CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = Vін)

Notes:

*1 See "FUNCTION TRUTH TABLE".
*2 CCMA1/CCMA2 = Command Address for Chip Erase, SCMA1/SCMA2 $=$ Command Address for Sector Erase, SA = Sector Address. See "COMMAND DEFINITION TABLE".

TIMING DIAGRAM (Continued)

MAIN MEMORY DATA POLLING CYCLE TIMING DIAGRAM (REG = $\mathrm{V}_{\mathbf{I}}$)

Notes:

*1 VA = PA for Programming Cycle, VA = SA for Sector Erase, VA = CA for Chip Erase.
*2 See "FUNCTION TRUTH TABLE".
*3 tEHEH1, 2 for CE Control.
*4 Program/Erase operation is finished.

TIMING DIAGRAM (Continued)

MAIN MEMORY TOGGLE BIT TIMING DIAGRAM (REG = Vін)

Notes:

*1 VA = PA for Programming Cycle, VA = SA for Sector Erase, VA = CA for Chip Erase.
*2 See "FUNCTION TRUTH TABLE".
*3 Program/Erase operation is finished.
*4 PD, $10 \mathrm{H}(1010 \mathrm{H})$ or $30 \mathrm{H}(3030 \mathrm{H})$

AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)
ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = VıL)

WRITE CYCLE 1: CE2 = VIH: $\times 8$-bit No. 1 Bus Organization

Note:
*1 Data polling operation.

AC CHARACTERISTICS (Continued)

(Recommended operating conditions unless otherwise noted.)
ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = VIL)

WRITE CYCLE 2: CE1 = CE2 : $\times 16$-bit Bus Organization

Notes:
*1 Inputs from D_{8} to D_{15} are not defined.
*2 Data polling operation.

AC CHARACTERISTICS (Continued)
(Recommended operating conditions unless otherwise noted.)

R/B Timing Diagram During Program / Erase Operations (except for MB98A81063)

RESET Timing Diagram (except for MB98A81063)

RESET

UNIQUE FEATURES FOR FLASH MEMORY CARD

1. SPECIAL MONITORING PINS

1.1 CD1, CD2: Card Detection Pins

CD1 and CD2 are to detect whether or not the card has been correctly inserted. (See Fig. 12.)
When the memory card has been correctly inserted, CD1 and CD2 are detected by the system. CD1, CD2 are tied to ground on the card side as shown in Fig. 12.
(A)

(B)

system side

- Fig. 12-

1.2 WP: Write Protect Pins

This pin monitors the position of the Write Protect switch. As shown in Fig. 13, the Flash memory card has a Write Protect switch at the top of the card (except for MB98A81674).

To write to the card, the switch must be turned to the "Non Protect" position and the WE pin low. And at that time, L-level is output on the WP pin.

To prevent writing to the card, the switch must be turned to the "Protect" position. At that time, H-level is output

WP Switch	WP (output)
Protect	H
Non Protect	L

- Fig. 13 -
- CARD INFORMATION

Memory Card have CIS (Card Information Structure) in Attribute memory.

1. CIS

Address	MB98A81063	MB98A81183	MB98A81273	MB98A81373	MB98A81473	MB98A81573	MB98A81674
0000 h	01 h						
0002 h	03 h						
0004 h	53 h						52 h
0006 h	0D h	1D h	OE h	1E h	3E h	7E h	FE h
0008 h	FF h						
000A h	15 h						
000C h	1 Ch						
000E h	04 h						
0010 h	01 h						
0012 h	46 h						
0014 h	55 h						
0016 h	4A h						
0018 h	49 h						
001A h	54 h						
001C h	53 h						
001E h	55 h						
0020 h	00 h						
0022 h	4D h						
0024 h	42 h						
0026 h	39 h						
0028 h	38 h						
002A h	41 h						
002C h	38 h						
002E h	30 h						
0030 h	30 h						
0032 h	36 h	38 h	37 h				
0034 h	33 h						34 h
0036 h	73 h						
0038 h	65 h						
003A h	72 h						
003C h	69 h						

(Continued)
(Continued)

2. Explanation for CIS

Address	MB98A81573	Attribute
0000 h	01 h	Common memory device information tuple
0002 h	03 h	Link to next tuple
0004 h	53 h	Flash memory with 150 ns access time
0006 h	7E h	32MB device size
0008 h	FF h	End of list
000A h	15 h	Level 1 version/product - information tuple
000C h	1 Ch	Link to next tuple
000E h	04 h	
0010 h	01 h	Conformed to JEIDA Ver.4.2/PCMCIA 2.1
0012 h	46 h	Product/Maker Information for "FUJITSU MB98A80070 series"
0014 h	55 h	
0016 h	4A h	
0018 h	49 h	
001A h	54 h	
001C h	53 h	
001E h	55 h	
0020 h	00 h	
0022 h	4D h	
0024 h	42 h	
0026 h	39 h	
0028 h	38 h	
002A h	41 h	
002C h	38 h	
002E h	30 h	
0030 h	30 h	
0032 h	37 h	
0034 h	33 h	
0036 h	73 h	
0038 h	65 h	
003A h	72 h	
003C h	69 h	
003E h	65 h	
0040 h	73 h	

(Continued)
(Continued)

PACKAGE DIMENSIONS

68-PIN MEMORY CARD
Dimention comform with PCMCIA/JEIDA. (PC CARD STANDARD)
(CASE No.: CRD-68P-M17)

(Continued)
(Continued)

68-PIN MEMORY CARD
(CASE No.: CRD-68P-M29)

Dimension comform with PCMCIA/JEIDA. (PC CARD STANDARD) PRELIMINARY

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

